Efficient Scaling and Moving Techniques for Spectral Methods in Unbounded Domains
نویسندگان
چکیده
When using Laguerre and Hermite spectral methods to numerically solve PDEs in unbounded domains, the number of collocation points assigned inside region interest is often insufficient, parti...
منابع مشابه
Hermite Spectral Methods with a Time-Dependent Scaling for Parabolic Equations in Unbounded Domains
Hermite spectral methods are investigated for linear diffusion equations and the viscous Burgers’ equation in unbounded domains. When the solution domain is unbounded, the diffusion operator no longer has a compact resolvent, which makes the Hermite spectral methods unstable. To overcome this difficulty, a time-dependent scaling factor is employed in the Hermite expansions, which yields a posit...
متن کاملHermite Spectral Methods for Fractional PDEs in Unbounded Domains
Numerical approximations of fractional PDEs in unbounded domains are considered in this paper. Since their solutions decay slowly with power laws at infinity, a domain truncation approach is not effective as no transparent boundary condition is available. We develop efficient Hermite-collocation and Hermite–Galerkin methods for solving a class of fractional PDEs in unbounded domains directly, a...
متن کاملSome Recent Advances on Spectral Methods for Unbounded Domains
We present in this paper a unified framework for analyzing the spectral methods in unbounded domains using mapped Jacobi, Laguerre and Hermite functions. A detailed comparison of the convergence rates of these spectral methods for solutions with typical decay behaviors is carried out, both theoretically and computationally. A brief review on some of the recent advances in the spectral methods f...
متن کاملStable and Efficient Spectral Methods in Unbounded Domains Using Laguerre Functions
Stable and efficient spectral methods using Laguerre functions are proposed and analyzed for model elliptic equations on regular unbounded domains. It is shown that spectral-Galerkin approximations based on Laguerre functions are stable and convergent with spectral accuracy in the usual (not weighted) Sobolev spaces. Efficient, accurate, and well-conditioned algorithms using Laguerre functions ...
متن کاملEfficient Spectral Sparse Grid Methods and Applications to High-Dimensional Elliptic Equations II. Unbounded Domains
This is the second part in a series of papers on using spectral sparse grid methods for solving higher-dimensional PDEs. We extend the basic idea in the first part [18] for solving PDEs in bounded higher-dimensional domains to unbounded higher-dimensional domains, and apply the new method to solve the electronic Schrödinger equation. By using modified mapped Chebyshev functions as basis functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2021
ISSN: ['1095-7197', '1064-8275']
DOI: https://doi.org/10.1137/20m1347711